Examples:
1. (Chains/Cables) You are lifting a
heavy chain to the top of a building.

The chain has a density of 3 lbs/foot.

The chain hangs over the side by 25
feet before you start pulling it up.
How much work is done in pulling
the chain all the way to the top?
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Example:

A 50 foot cable with density 4 lbs/ft
Is hanging over the side of a tall
building. .
Find the total work done in lifting
the cable half way up.
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Example: (You do — like HW). 2 ——-d-”-(oxw
A cable with density & [bs/ft is
being used to lift a 50 pound

weight from the ground to the top L
of a 25 foot building. Find the total S x2S e
work done. N cpaLe
F=So \bg F =% ax
Step 1: Draw a picture. D = ax D= X
. . T8 18
Step 2: Break u_p the problem: | 8 £ dx S‘O 5 B
(a) Work to lift the 50 Ibs weight? 0 . 3 . \u
(b) Work to lift the cable? Sox |\, 7 e
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2.(Pumping Liquid) You are pumping P
water out of a tank. The tankis a
rectangular box with a base of 2 ft by

| ez
3 ft and height of 10ft.The density of \o ¥4 sy == Ij
water is 62.5 lbs/ft3.
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If the tank starts full, how much work R
is done in pumping all the water to e
the top and out over the side? t %‘f
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Example:

Consider the tank show at right.

The height is 3 meters, the width at the
top is 2 meters and the length is 6
meters. Also we are pumping the water
up to 4 meters above the ground (1
meter above the top edge).

If it starts full, how much work is done to
pump it all out?
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Quick Summary: Problem type 2: (Chain/pumping)

ik FORCE = weight of a horizontal slice
Work = %1_{{.10 (FORCE)(DIST) DIST = distance moved by that slice

i=1
Chain:
k = density = force per distance
FORCE = weight of slice = kAx
DIST = distance moved by slice
(typically x if you label like me)

b
= f (FORCE)(DIST)

Problem type 1: (Leaky bucket/spring)
Leaking at constant rate = f(x) = mx+b

b
Spring (Hooke’s Law) = f(x) = kx W'ORK = [, x kdx
Force given = f(x) = force Pumpmg:'
FORCE = f(Xi), DISTANCE = Ax DenS:ILl'OyO(())fll/v(/Jte; 200 N/ 3
= [ = g/m-= = m
WORK= Jo f(dx | = 62.5 |bs/ft3

k = density = weight per volume

FORCE = k vol = k(hor. slice area)Ay

DIST = distance moved by slice
(typically a-y if you label like me)

WORK = fob(a — y)k(slice area)dy



6.5 Average Value
The average value of the n numbers:

. . Vl; VZ; y3; ey Yn ac - ,
is given by 1 |
V1tY2+y3+--+Y¥n 1 1 T SN
f— — —I— s e —l— -, I - - '
n yl n y‘n n 2. - ’

Goal: We want the average value of —
all the y-values of some function |
y = f(x) over an interval x=atox =b.
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Ex\ )=
Derivation: Exd 4= x

1. Break into n equal subdivisions Axe 220
b— Ax 1 S .

Ax = — WhICh means — = — o Y, Y
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2. Compute y-value at each tick mark [ )3‘ t}/rj
V1 = f(x1),y2 = f(x2), ., Yn = [ (xn)
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